= . Dify English

Nodes

Start

Answer

Knowledge Retrieval
IF/ELSE

Template

HTTP Request

Next
Start

End

LLM

Question Classifier

Code

Variable Assigner

Tools

Github Q

Previous
Key Concept

https://docs.dify.ai/features/workflow/node/start
https://docs.dify.ai/features/workflow/node/end
https://docs.dify.ai/features/workflow/node/answer
https://docs.dify.ai/features/workflow/node/llm
https://docs.dify.ai/features/workflow/node/knowledge-retrieval
https://docs.dify.ai/features/workflow/node/question-classifier
https://docs.dify.ai/features/workflow/node/if-else
https://docs.dify.ai/features/workflow/node/code
https://docs.dify.ai/features/workflow/node/template
https://docs.dify.ai/features/workflow/node/variable-assigner
https://docs.dify.ai/features/workflow/node/http-request
https://docs.dify.ai/features/workflow/node/tools
https://docs.dify.ai/features/workflow/key-concept
https://docs.dify.ai/features/workflow/node/start
https://docs.dify.ai/
https://github.com/langgenius/dify

Start

Defining initial parameters for a workflow process initiation allows for customization at the
start node, where you input variables to kick-start the workflow. Every workflow necessitates
a start node, acting as the entry point and foundation for the workflow's execution path.

i W g @ Seudo Thres-Steg Tranuation] Enowisd 4 Tool PRt THAM [
Y-

Thrss-Bins Banalrion MorkBew . ; m £
- B & 2 NP
» B start

— LT BT
a] B us 8. 2 BN = RE
] 31 ot 4 0018 e s T a0 b [3 ot 4675 prrvirm B ®

Within the "Start" node, you can define input variables of four types:

Text: For short, simple text inputs like names, identifiers, or any other concise data.

Paragraph: Supports longer text entries, suitable for descriptions, detailed queries, or any
extensive textual data.

Dropdown Options: Allows the selection from a predefined list of options, enabling users
to choose from a set of predetermined values.

Number: For numeric inputs, whether integers or decimals, to be used in calculations,
quantities, identifiers, etc.

= r Dify English ~ Github Q

Once the configuration is completed, the workflow's execution will prompt for the values of
the variables defined in the start node. This step ensures that the workflow has all the
necessary information to proceed with its designated processes.

F Dify. ome wm & Bl Do | SermmetAnslysks - [Mnowledgs 8] Took (amEe o .ﬂ,v
B g ot A Pubbihad s B BRa G EFesen - sz
[Test Run. x
8 wruT
B L lia1
[
a
Bt
) — i -] True -
=| e b A i —
.
LR Pigaeia it
p—
= L e
]
e — T
[)

Tip: In Chatflow, the start node provides system-built variables: sys.query and sys.files .

sys.query is utilized for user question input in conversational applications, enabling the
system to process and respond to user queries. sys.files is used for file uploads within the
conversation, such as uploading an image to understand its content. This requires the
integration of image understanding models or tools designed for processing image inputs,
allowing the workflow to interpret and act upon the uploaded files effectively.

Previous
Nodes

https://docs.dify.ai/features/workflow/node
https://docs.dify.ai/
https://github.com/langgenius/dify

Next
End

Last updated 2 months ago

https://docs.dify.ai/features/workflow/node/end

End

Defining the Final Output Content of a Workflow Process. Every workflow needs at least one
"End" node to output the final result after full execution.

The "End" node serves as the termination point of the process, beyond which no further
nodes can be added. In workflow applications, execution results are only output when the
process reaches the "End" node. If the process involves conditional branching, multiple "End"
nodes must be defined.

Single-Path Execution Example:

. Dif';".. Chsar misy Fapicr @ StuSic Three-Step Tramation B Mrowissg 4 Tools SRS | e e e
£ Trasstiese forimos

T o
R | E———— - Gobshmedne [riem

B Test Run#l

§ oiy Engish Github Q

Multi-Path Execution Example:

https://docs.dify.ai/
https://github.com/langgenius/dify

K Dpify. 0w nme

W Rt S e
]
[
[
@
I} inpeat_neen
In] My medirmges
| el Comegavian
b
Q0 e v
.
Next
Answer

Last updated 2 months ago

@ Lpiers @ S

Sertmen] Anshyin

[0 Kremiedon

& Toois

8w

(TERPEENEN
-

[T R

ATISTRE TEAM .W}'

= 0o back 1 sciter b & Featurea m

Tewt Runai L

eyt EEAT GITAR TRAGNG

STATUS ELAFID Tral POTAL TORERS
LETCet LETE AP Vaaen

T (=]
L]

Slagen_ven*) <§ dea'n like 1%,

Rl T

“Catogarims =7,

. g1k (1
1]

RO

CUTHIT o

LI}

PRI T L PR R
‘\"iﬂllﬂl\.'l U e it

3

aTagars

Haka ST

s Dy

Tt Fera FE-C 08 BT 4 4

Previous
Start

https://docs.dify.ai/features/workflow/node/start
https://docs.dify.ai/features/workflow/node/answer

Answer

Answer

Defining Reply Content in a Chatflow Process. In a text editor, you have the flexibility to
determine the reply format. This includes crafting a fixed block of text, utilizing output
variables from preceding steps as the reply content, or merging custom text with variables
for the response.

Answer node can be seamlessly integrated at any point to dynamically deliver content into
the dialogue responses. This setup supports a live-editing configuration mode, allowing for
both text and image content to be arranged together. The configurations include:

Outputting the reply content from a Language Model (LLM) node.
Outputting generated images.

Outputting plain text.

Example 1: Output plain text.

i Dify. Qus ww = R R ———— B 4 Tools T a

MEXT STIF

Example 2: Output image and LLM reply.

1 ﬂ LLM] ! ' DALL-E 3

B gpt-a cnar SIZE

Dify English

Next
LLM

Last updated 2 months ago

| E Answer

PN ANTWER
image: [=IDALL-E3 [xlfies AlA
mswar: @ L G et

© Workflow Process

Using an iPhone involves several steps:

1. Power On: Press and hold the side
button until the Apple logo appears.

2. Set Up: Follow the instructions on the

screen to set up your iPhone. This
includes selecting a language,
setting up Wi-Fi, enabling location

services, setting up a passcode, and

signing in with your Apple ID.

3. Home Screen: Once setup is

complete, you'll be taken to the home
screen. Here, you can access all your

apps by swiping left or right.

Remember, the exact steps might vary
slightly depending on which iPhone
model you have.

CITATIONS

« upload_files_8882d60f-188b-48...

P T—

L) mnswer

ATwTE

A b

Github

Previous
End

https://docs.dify.ai/features/workflow/node/end
https://docs.dify.ai/features/workflow/node/llm
https://docs.dify.ai/
https://github.com/langgenius/dify

LLM

Invoking a Large Language Model for Question Answering or Natural Language Processing.
Within an LLM node, you can select an appropriate model, compose prompts, set the context
referenced in the prompts, configure memory settings, and adjust the memory window size.

o s @ Stedic Qusation Classiler + Kn @ vnomisdge [Tosh A T = o
Y-
= 0 uu
L
[a T,
COMFIET
o Q- == [=] =] -
T - [re—— T -
reETIM
’ - i k.

Configuring an LLM node primarily involves two steps:

Selecting a model

Composing system prompts
Model Configuration

Before selecting a model suitable for your task, you must complete the model configuration in
"System Settings—Model Provider". The specific configuration method can be referenced in
the model configuration instructions. After selecting a model, you can configure its
parameters.

https://docs.dify.ai/tutorials/model-configuration#model-integration-settings

Cusstion Claailier + An. B i 4 ool STHENO | TEAM ﬁ Dty

§ Dify. 0w s bpicrs @ Stusie
o, oo cmmes o Cume . b s 112 — I
E B um b .
ML
B ost-25trtia car ¥
o [pe—— i s Bu - T aseay) apt-28 s Dot
T e
s T -
------ [=] a7
= B B =
[TSR : L)
wace Pe_ O @) (]
- L [& o
i Tk O w2
........
o Lbgasns
M RADNEY
CRITHET VARIASLTE
MIET ETEP
.
Write Prompts

Within an LLM node, you can customize the model input prompts. If you choose a
conversational model, you can customize the content of system prompts, user messages,

and assistant messages.

For instance, in a knowledge base Q&A scenario, after linking the "Result" variable from the
knowledge base retrieval node in "Context", inserting the "Context" special variable in the
prompts will use the text retrieved from the knowledge base as the context background

information for the model input.

l D”‘."- Claw sy g @ Stetic uestion Clawufisr s Kn] Mrscwiacs | Toois £ TIaTee T ah'.-
- B um b .
3L
) apt-25-uria
CONTIXT

L AT
DUTFUT VARSABLES

MEXT STEP

In the prompt editor, you can bring up the variable insertion menu by typing "/" or "{" to insert
special variable blocks or variables from preceding flow nodes into the prompts as context

content.

) uwm Do X

Add description..

MODEL

gpt-3.5-turbo CHAT = o

CONTEXT ®

O Knowledge Retrieval ' result Array[Object]

To enable the context feature, please fill in the context variable in
PROMPT.

' N\
SYSTEM: (@ 383 el

Use the following context as your learned knowledge, inside
<context></context> XML tags.
<context>

1
B Context

~ START ’

{x} sys.query String

MEMORIES &) BUILT-IN

USER (@ 15 &3
@ Start / {x} sys.query

MEMORY © «©

WINDOW SIZE 50

If you opt for a completion model, the system provides preset prompt templates for
conversational applications. You can customize the content of the prompts and insert special
variable blocks like "Conversation History" and "Context" at appropriate positions by typing
“I" or "{", enabling richer conversational functionalities.

Dify English Github Q

https://docs.dify.ai/
https://github.com/langgenius/dify

‘ Dify. O moaz Fapio @ Stedio | Queation Classifier + Ka - iG] T ﬂ1

» D uwm

e
[P T ——

COMFERT

Memory Toggle Settings

In conversational applications (Chatflow), the LLM node defaults to enabling system memory
settings. In multi-turn dialogues, the system stores historical dialogue messages and passes
them into the model. In workflow applications (Workflow), system memory is turned off by
default, and no memory setting options are provided.

Memory Window Settings

If the memory window setting is off, the system dynamically passes historical dialogue
messages according to the model's context window. With the memory window setting on,
you can configure the number of historical dialogue messages to pass based on your needs.

Dialogue Role Name Settings

Due to differences in model training phases, different models adhere to role name commands
to varying degrees, such as Human/Assistant, Human/Al, AZ§/Bh3F, etc. To adapt to the
prompt response effects of multiple models, the system allows setting dialogue role names,
modifying the role prefix in conversation history.

Previous
Answer

Next
Knowledge Retrieval

https://docs.dify.ai/features/workflow/node/answer
https://docs.dify.ai/features/workflow/node/knowledge-retrieval

Knowledge Retrieval

The Knowledge Base Retrieval Node is designed to query text content related to user
questions from the Dify Knowledge Base, which can then be used as context for subsequent
answers by the Large Language Model (LLM).

‘ Dy, Crss o oo O Stedic Hrowhedgs Retrebesl & O B K 4 4 Tocle LFiTRG T

" o.ﬂ,-,.
Kincombeckps Matraiea + Ehambot .
'-'
v o

L]

Configuring the Knowledge Base Retrieval Node involves three main steps:

Selecting the Query Variable
Choosing the Knowledge Base for Query

Configuring the Retrieval Strategy
Selecting the Query Variable

In knowledge base retrieval scenarios, the query variable typically represents the user's input
question. In the "Start" node of conversational applications, the system pre-sets "sys.query"
as the user input variable. This variable can be used to query the knowledge base for text
segments most closely related to the user's question.

Choosing the Knowledge Base for Query

Within the knowledge base retrieval node, you can add an existing knowledge base from Dify.
For instructions on creating a knowledge base within Dify, please refer to the knowledge

base help documentation.
Configuring the Retrieval Strategy

It's possible to modify the indexing strategy and retrieval mode for an individual knowledge
base within the node. For a detailed explanation of these settings, refer to the knowledge
base help documentation.

I Dify. s s & Dpiors @ Studic Knowledge Reieivas] B Hnowiedgs & Toola DTG TeAu e Dty =
e —
- 1 e Kniededge 1ellings.
E
Knowbedge Nams
Prishusl Brwinditbase 1
Enowiedge descripiion

B = ' @ us 1 (B Ao
_Loss o Permissions
B Ondy e o £ AN b mambent
& igh Coualiey B Economics
Rearieval setting
= l Dify English Github Q

executed through function calling, requiring the selection of a system reasoning model. In the
multi-way recall mode, a Rerank model needs to be configured for result re-ranking. For a
detailed explanation of these two recall strategies, refer to the retrieval mode explanation in
the help documentation.

N Dify. Ose mu G bxpiers @ Shels Keowiedgs Bevehl s € [0 weemiedgs @ Tash U
M [SP——] (1]
-, a1 : B brovine CRrTe— ...
[B ¥rowssdge Ratrieval >
et i iy Bl il il B e B

R el

[r—

R ey

WHOWLIDGE Mt relabrenl =

B = Iy = bt (N e 2y Wt et o

Eywtem Enananin Wsdel
) 15t

https://docs.dify.ai/features/datasets
https://docs.dify.ai/features/retrieval-augment/hybrid-search
https://docs.dify.ai/features/retrieval-augment/retrieval
https://docs.dify.ai/
https://github.com/langgenius/dify

Previous
LLM

Next
Question Classifier

https://docs.dify.ai/features/workflow/node/llm
https://docs.dify.ai/features/workflow/node/question-classifier

Question Classifier

Question Classifier node defines the categorization conditions for user queries, enabling the
LLM to dictate the progression of the dialogue based on these categorizations. As illustrated
in a typical customer service robot scenario, the question classifier can serve as a preliminary
step to knowledge base retrieval, identifying user intent. Classifying user intent before
retrieval can significantly enhance the recall efficiency of the knowledge base.

i Dify. G mes Dpers 5 S068s | CuBIS CLLEIN - A O Knowiesge B ool Arsee Tw °:>'.-

ALAARCTD SETTING

= | Dify English Github Q

Selecting the Input Variable
Configuring the Inference Model

Writing the Classification Method

Selecting the Input Variable In conversational customer scenarios, you can use the user
input variable from the "Start Node" (sys.query) as the input for the question classifier. In
automated/batch processing scenarios, customer feedback or email content can be utilized
as input variables.

Configuring the Inference Model The question classifier relies on the natural language

processing capabilities of the LLM to categorize text. You will need to configure an inference
model for the classifier. Before configuring this model, you might need to complete the model
setup in "System Settings - Model Provider". The specific configuration method can be found

https://docs.dify.ai/
https://github.com/langgenius/dify

in the model configuration instructions. After selecting a suitable model, you can configure its

parameters.

Writing Classification Conditions You can manually add multiple classifications by
composing keywords or descriptive sentences that fit each classification. Based on the
descriptions of these conditions, the question classifier can route the dialogue to the
appropriate process path according to the semantics of the user's input.

Previous
Knowledge Retrieval

Next
IF/ELSE

https://docs.dify.ai/tutorials/model-configuration#model-integration-settings
https://docs.dify.ai/features/workflow/node/knowledge-retrieval
https://docs.dify.ai/features/workflow/node/if-else

= | Dify English Github Q

The IF/ELSE Node allows you to split a workflow into two branches based on if/else
conditions. In this node, you can set one or more IF conditions. When the IF condition(s) are
met, the workflow proceeds to the next step under the "IS TRUE" branch. If the IF
condition(s) are not met, the workflow triggers the next step under the "IS FALSE" branch.

] Dify. O=sw wm wmiae g Shedis | Senlimest Aealysh 5 Erowiedge STISTRG TEAW al""'
Dt b ® F P m 5
P B weuse
a s
. B & dud Condition
<) (@ =
MIKT STOF
[——— 0 s <] [JRP——
- =3 * P
Previous

Question Classifier

Next
Code

https://docs.dify.ai/features/workflow/node/question-classifier
https://docs.dify.ai/features/workflow/node/code
https://docs.dify.ai/
https://github.com/langgenius/dify

Code

Navigation

Introduction
Use Cases
Local Deployment

Security Policy

Introduction

The code node supports the execution of Python / NodeJS code to perform data
transformations within workflows. It simplifies your workflows, suitable for Arithmetic, JSON
transform, text processing, and more scenarios.

This node significantly enhances developers' flexibility, allowing them to embed custom
Python or Javascript scripts in their workflows and manipulate variables in ways that preset
nodes cannot achieve. Through configuration options, you can specify the required input and
output variables and write the corresponding execution code:

INPUT VARIABLES +
arg’l W
arg2 x} Set variable o
Python3<¢ &2
1 def main(argl: int, arg2: int) —> dict:

2 return {
3 | "result": argl + arg2, —
4 }

OUTPUT VARIABLES +

result String v T
Configuration

If you need to use variables from other nodes within the code node, you need to define the
variable names in input variables and reference these variables, see Variable Reference
for details.

Use Cases

With the code node, you can perform the following common operations:

Structured Data Processing

In workflows, it's often necessary to deal with unstructured data processing, such as parsing,
extracting, and transforming JSON strings. A typical example is data processing in the HTTP
node, where data might be nested within multiple layers of JSON objects, and we need to

https://github.com/langgenius/dify-docs/blob/main/en/features/workflow/key_concept.md#variable

extract certain fields. The code node can help you accomplish these tasks. Here's a simple
example that extracts the data.name field from a JSON string returned by an HTTP node:

def main(http_response: str) -> str:
import json
data = json.loads(http_response)
return {
do not forget to declare 'result' in the output variables
'result': data['data']['name']

= | Dify English Github Q

When complex mathematical calculations are needed in workflows, the code node can also
be used. For example, to calculate a complex mathematical formula or perform some
statistical analysis on the data. Here is a simple example that calculates the variance of a list:

def main(x: list) -> float:
return {
do not forget to declare 'result' in the output variables
'result': sum([(i - sum(x) / len(x)) **x 2 for i in x]) / len(x)

Data Concatenation

Sometimes, you may need to concatenate multiple data sources, such as multiple knowledge
retrievals, data searches, API calls, etc. The code node can help you integrate these data
sources. Here's a simple example that merges data from two knowledge bases:

def main(knowledgel: list, knowledge2: list) -> list:
return {
do not forget to declare 'result' in the output variables
'result': knowledgel + knowledge2

Local Deployment

If you are a user deploying locally, you need to start a sandbox service, which ensures that
malicious code is not executed. Also, launching this service requires Docker, and you can find
specific information about the Sandbox service here. You can also directly start the service
using docker-compose

https://github.com/langgenius/dify/tree/main/docker/docker-compose.middleware.yaml
https://docs.dify.ai/
https://github.com/langgenius/dify

docker-compose -f docker-compose.middleware.yaml up -d

Security Policy

The execution environment is sandboxed for both Python and Javascript, meaning that
certain functionalities that require extensive system resources or pose security risks are not
available. This includes, but is not limited to, direct file system access, network calls, and
operating system-level commands.

Previous
IF/ELSE

Next
Template

https://docs.dify.ai/features/workflow/node/if-else
https://docs.dify.ai/features/workflow/node/template

Template

Template lets you dynamically format and combine variables from previous nodes into a
single text-based output using Jinja2, a powerful templating syntax for Python. It's useful for
combining data from multiple sources into a specific structure required by subsequent nodes.
The simple example below shows how to assemble an article by piecing together various

previous outputs:

a Article template P - X

Organize components into one article as output

INPUT VARIABLES +
intro @ LLM | text String 1T
body @ LLM | text String o
title {x} Variable Assigner outp... String 1T

CODE Only supports Jinja2® () &3
1 {{ title }}
2 {{ intro }} —
3 {{ body }}

OUTPUT VARIABLES v

output String
Transformed content

Beyond naive use cases, you can create more complex templates as per Jinja's
documentation for a variety of tasks. Here's one template that structures retrieved chunks
and their relevant metadata from a knowledge retrieval node into a formatted markdown:

https://jinja.palletsprojects.com/en/3.1.x/templates/

= l Dify English Github Q

JHHE Similarity: 31 item.metadata.score | default('N/A') 1%
JHHHE {3 item.title 3%

JHHHHE Content
i{ item.content | replace('\n', '\n\n') %}

1% endfor %
ke traits of a hacker?

- © Werkllim Pracess 3

Hera's $oims information thal might be

relesant:
—_ B Knowledge Retrieval 2 — B Formatted chunks & Answer 3 @ — Churk 1. Similarity: 0.8654893
W PG-Hackers and Painters ANSWER Hatkars i
Here's some information that might
bt relevant: Content
® Formatt.. (=) output
hacker

111 A good programmer. (2) Someons
whed braaks into computers.

Chunk 2, Similarity: 0.48372462

Hackers. txt

This template node can then be used within a Chatflow to return intermediate outputs to the
end user, before a LLM response is initiated.

The Answer node in a Chatflow is non-terminal. It can be inserted anywhere to output
responses at multiple points within the flow.

Previous

Code

Next
Variable Assigner

Last updated 2 months ago

https://docs.dify.ai/features/workflow/node/code
https://docs.dify.ai/features/workflow/node/variable-assigner
https://docs.dify.ai/
https://github.com/langgenius/dify

Variable Assigner

The Variable Assigner node serves as a hub for collecting branch outputs within the
workflow, ensuring that regardless of which branch is taken, the output can be referenced by
a single variable. The output can subsequently be manipulated by nodes downstream.

1 B Technical papers | @ Technical summary I

@ lamport=paxos.pdf., e o AT
1 m Question Classifier [gpt-3.5-turbo &4

Look up lamport-paxos paper for m Variable Assigner

Summary made with reference to
G gpt_g_s_turb.g CHA npul related o distiibuted systems retriaved know edge ASCIGH VARIABLES
CLASE 1 i @ Technical summary [z] text
Technical @ Unreferenced summary [} text
CLASE 2 ;
Other OUTPUT TYPE Sitring
1 @ Unreferenced summary I
[gpt-3.5-turba cHaT
= . Dify English Github Q

Object , and Array . Given the specified output type, you may add input variables from the
dropdown list of variables to the node. The list of variables is derived from previous branch
outputs and autofiltered based on the specified type.

Variable Assigner X

Add description...

OUTPUT VARIABLE TYPE
String v

ASSIGN VARIABLES +
} Set variable W
Q Search variable
UNREFERENCED SUMMARY
{(x) text String
TECHNICAL SUMMARY

{x} text String

Variable Assigner gives a single output variable of the specified type for downstream use.

Previous
Template

https://docs.dify.ai/features/workflow/node/template
https://docs.dify.ai/
https://github.com/langgenius/dify

Next
HTTP Request

Last updated 2 months ago

https://docs.dify.ai/features/workflow/node/http-request

HTTP Request

HTTP Request node lets you craft and dispatch HTTP requests to specified endpoints,
enabling a wide range of integrations and data exchanges with external services. The node
supports all common HTTP request methods, and lets you fully customize over the URL,
headers, query parameters, body content, and authorization details of the request.

@ HTTP Request Do X

POST v

HEADERS

KEY VALUE

PARAMS

KEY VALUE

BODY

Dify English Github Q

OUTPUT VARIABLES v

body String
Response Content

status_code Number
Response Status Code

headers Object
Response Header List JSON

files Array[File]
Files List

NEXT STEP

@ ; 1+ Select Next Block

A really handy feature with HTTP request is the ability to dynamically construct the request
by inserting variables in different fields. For instance, in a customer support scenario,

https://docs.dify.ai/
https://github.com/langgenius/dify

variables such as username or customer ID can be used to personalize automated responses
sent via a POST request, or retrieve individual-specific information related to the
customer.The HTTP request returns body , status_code , headers ,and files as outputs.
If the response includes files of MIME types (currently limited to images), the node
automatically saves these as files for downstream use.

Previous
Variable Assigner

Next
Tools

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Common_types
https://docs.dify.ai/features/workflow/node/variable-assigner
https://docs.dify.ai/features/workflow/node/tools

Tools

Within a workflow, Dify provides both built-in and customizable tools. Before utilizing these
tools, you need to "authorize" them. If the built-in tools do not meet your requirements, you
can create custom tools within "Dify—Tools".

= . Dify English Github Q

G Ooewederch .
Sratry W

Iy Ergwensesen =

e B e (3 DuckDakGo Search [p— B g
" o B ouie . Sibe

P oaiEa . -

@ Aes DMLE S AT WAL
X STER

W Wikipedabamds

B mewn = Bux

B Ticier

Configuring a tool node generally involves two steps:

Authorizing the Tool/Creating Custom Tools

Configuring Tool Inputs and Parameters

For guidance on creating custom tools and configuring them, please refer to the tool
configuration instructions.

Previous
HTTP Request

Next
Preview&Run

https://docs.dify.ai/tutorials/quick-tool-integration
https://docs.dify.ai/tutorials/quick-tool-integration
https://docs.dify.ai/tutorials/quick-tool-integration
https://docs.dify.ai/features/workflow/node/http-request
https://docs.dify.ai/features/workflow/preview-and-run
https://docs.dify.ai/
https://github.com/langgenius/dify

