
Nodes

Start End

Answer LLM

Knowledge Retrieval Question Classifier

IF/ELSE Code

Template Variable Assigner

HTTP Request Tools

Previous

Key Concept

Next

Start

Dify English Github

https://docs.dify.ai/features/workflow/node/start
https://docs.dify.ai/features/workflow/node/end
https://docs.dify.ai/features/workflow/node/answer
https://docs.dify.ai/features/workflow/node/llm
https://docs.dify.ai/features/workflow/node/knowledge-retrieval
https://docs.dify.ai/features/workflow/node/question-classifier
https://docs.dify.ai/features/workflow/node/if-else
https://docs.dify.ai/features/workflow/node/code
https://docs.dify.ai/features/workflow/node/template
https://docs.dify.ai/features/workflow/node/variable-assigner
https://docs.dify.ai/features/workflow/node/http-request
https://docs.dify.ai/features/workflow/node/tools
https://docs.dify.ai/features/workflow/key-concept
https://docs.dify.ai/features/workflow/node/start
https://docs.dify.ai/
https://github.com/langgenius/dify

Start
Defining initial parameters for a workflow process initiation allows for customization at the

start node, where you input variables to kick-start the workflow. Every workflow necessitates

a start node, acting as the entry point and foundation for the workflow's execution path.

Within the "Start" node, you can define input variables of four types:

Text: For short, simple text inputs like names, identifiers, or any other concise data.

Paragraph: Supports longer text entries, suitable for descriptions, detailed queries, or any

extensive textual data.

Dropdown Options: Allows the selection from a predefined list of options, enabling users

to choose from a set of predetermined values.

Number: For numeric inputs, whether integers or decimals, to be used in calculations,

quantities, identifiers, etc.

Once the configuration is completed, the workflow's execution will prompt for the values of

the variables defined in the start node. This step ensures that the workflow has all the

necessary information to proceed with its designated processes.

Tip: In Chatflow, the start node provides system-built variables: sys.query and sys.files .

sys.query is utilized for user question input in conversational applications, enabling the

system to process and respond to user queries. sys.files is used for file uploads within the

conversation, such as uploading an image to understand its content. This requires the

integration of image understanding models or tools designed for processing image inputs,

allowing the workflow to interpret and act upon the uploaded files effectively.

Previous

Nodes

Dify English Github

https://docs.dify.ai/features/workflow/node
https://docs.dify.ai/
https://github.com/langgenius/dify

Next

End

Last updated 2 months ago

https://docs.dify.ai/features/workflow/node/end

End
Defining the Final Output Content of a Workflow Process. Every workflow needs at least one

"End" node to output the final result after full execution.

The "End" node serves as the termination point of the process, beyond which no further

nodes can be added. In workflow applications, execution results are only output when the

process reaches the "End" node. If the process involves conditional branching, multiple "End"

nodes must be defined.

Single-Path Execution Example:

Multi-Path Execution Example:

Dify English Github

https://docs.dify.ai/
https://github.com/langgenius/dify

Previous

Start

Next

Answer

Last updated 2 months ago

https://docs.dify.ai/features/workflow/node/start
https://docs.dify.ai/features/workflow/node/answer

Answer
Answer

Defining Reply Content in a Chatflow Process. In a text editor, you have the flexibility to

determine the reply format. This includes crafting a fixed block of text, utilizing output

variables from preceding steps as the reply content, or merging custom text with variables

for the response.

Answer node can be seamlessly integrated at any point to dynamically deliver content into

the dialogue responses. This setup supports a live-editing configuration mode, allowing for

both text and image content to be arranged together. The configurations include:

1. Outputting the reply content from a Language Model (LLM) node.

2. Outputting generated images.

3. Outputting plain text.

Example 1: Output plain text.

Example 2: Output image and LLM reply.

Previous

End

Next

LLM

Last updated 2 months ago

Dify English Github

https://docs.dify.ai/features/workflow/node/end
https://docs.dify.ai/features/workflow/node/llm
https://docs.dify.ai/
https://github.com/langgenius/dify

LLM
Invoking a Large Language Model for Question Answering or Natural Language Processing.

Within an LLM node, you can select an appropriate model, compose prompts, set the context

referenced in the prompts, configure memory settings, and adjust the memory window size.

Configuring an LLM node primarily involves two steps:

1. Selecting a model

2. Composing system prompts

Model Configuration

Before selecting a model suitable for your task, you must complete the model configuration in

"System Settings—Model Provider". The specific configuration method can be referenced in

the model configuration instructions. After selecting a model, you can configure its

parameters.

https://docs.dify.ai/tutorials/model-configuration#model-integration-settings

Write Prompts

Within an LLM node, you can customize the model input prompts. If you choose a

conversational model, you can customize the content of system prompts, user messages,

and assistant messages.

For instance, in a knowledge base Q&A scenario, after linking the "Result" variable from the

knowledge base retrieval node in "Context", inserting the "Context" special variable in the

prompts will use the text retrieved from the knowledge base as the context background

information for the model input.

In the prompt editor, you can bring up the variable insertion menu by typing "/" or "{" to insert

special variable blocks or variables from preceding flow nodes into the prompts as context

content.

If you opt for a completion model, the system provides preset prompt templates for

conversational applications. You can customize the content of the prompts and insert special

variable blocks like "Conversation History" and "Context" at appropriate positions by typing

"/" or "{", enabling richer conversational functionalities.

Dify English Github

https://docs.dify.ai/
https://github.com/langgenius/dify

Memory Toggle Settings

In conversational applications (Chatflow), the LLM node defaults to enabling system memory

settings. In multi-turn dialogues, the system stores historical dialogue messages and passes

them into the model. In workflow applications (Workflow), system memory is turned off by

default, and no memory setting options are provided.

Memory Window Settings

If the memory window setting is off, the system dynamically passes historical dialogue

messages according to the model's context window. With the memory window setting on,

you can configure the number of historical dialogue messages to pass based on your needs.

Dialogue Role Name Settings

Due to differences in model training phases, different models adhere to role name commands

to varying degrees, such as Human/Assistant, Human/AI, 人类/助手, etc. To adapt to the

prompt response effects of multiple models, the system allows setting dialogue role names,

modifying the role prefix in conversation history.

Previous

Answer

Next

Knowledge Retrieval

Last updated 2 months ago

https://docs.dify.ai/features/workflow/node/answer
https://docs.dify.ai/features/workflow/node/knowledge-retrieval

Knowledge Retrieval

The Knowledge Base Retrieval Node is designed to query text content related to user

questions from the Dify Knowledge Base, which can then be used as context for subsequent

answers by the Large Language Model (LLM).

Configuring the Knowledge Base Retrieval Node involves three main steps:

1. Selecting the Query Variable

2. Choosing the Knowledge Base for Query

3. Configuring the Retrieval Strategy

Selecting the Query Variable

In knowledge base retrieval scenarios, the query variable typically represents the user's input

question. In the "Start" node of conversational applications, the system pre-sets "sys.query"

as the user input variable. This variable can be used to query the knowledge base for text

segments most closely related to the user's question.

Choosing the Knowledge Base for Query

Within the knowledge base retrieval node, you can add an existing knowledge base from Dify.

For instructions on creating a knowledge base within Dify, please refer to the knowledge

base help documentation.

Configuring the Retrieval Strategy

It's possible to modify the indexing strategy and retrieval mode for an individual knowledge

base within the node. For a detailed explanation of these settings, refer to the knowledge

base help documentation.

Dify offers two recall strategies for different knowledge base retrieval scenarios: "N-choose-1

Recall" and "Multi-way Recall". In the N-choose-1 mode, knowledge base queries are

executed through function calling, requiring the selection of a system reasoning model. In the

multi-way recall mode, a Rerank model needs to be configured for result re-ranking. For a

detailed explanation of these two recall strategies, refer to the retrieval mode explanation in

the help documentation.

Dify English Github

https://docs.dify.ai/features/datasets
https://docs.dify.ai/features/retrieval-augment/hybrid-search
https://docs.dify.ai/features/retrieval-augment/retrieval
https://docs.dify.ai/
https://github.com/langgenius/dify

Previous

LLM

Next

Question Classifier

Last updated 2 months ago

https://docs.dify.ai/features/workflow/node/llm
https://docs.dify.ai/features/workflow/node/question-classifier

Question Classifier
Question Classifier node defines the categorization conditions for user queries, enabling the

LLM to dictate the progression of the dialogue based on these categorizations. As illustrated

in a typical customer service robot scenario, the question classifier can serve as a preliminary

step to knowledge base retrieval, identifying user intent. Classifying user intent before

retrieval can significantly enhance the recall efficiency of the knowledge base.

Configuring the Question Classifier Node involves three main components:

1. Selecting the Input Variable

2. Configuring the Inference Model

3. Writing the Classification Method

Selecting the Input Variable In conversational customer scenarios, you can use the user

input variable from the "Start Node" (sys.query) as the input for the question classifier. In

automated/batch processing scenarios, customer feedback or email content can be utilized

as input variables.

Configuring the Inference Model The question classifier relies on the natural language

processing capabilities of the LLM to categorize text. You will need to configure an inference

model for the classifier. Before configuring this model, you might need to complete the model

setup in "System Settings - Model Provider". The specific configuration method can be found

Dify English Github

https://docs.dify.ai/
https://github.com/langgenius/dify

in the model configuration instructions. After selecting a suitable model, you can configure its

parameters.

Writing Classification Conditions You can manually add multiple classifications by

composing keywords or descriptive sentences that fit each classification. Based on the

descriptions of these conditions, the question classifier can route the dialogue to the

appropriate process path according to the semantics of the user's input.

Previous

Knowledge Retrieval

Next

IF/ELSE

Last updated 2 months ago

https://docs.dify.ai/tutorials/model-configuration#model-integration-settings
https://docs.dify.ai/features/workflow/node/knowledge-retrieval
https://docs.dify.ai/features/workflow/node/if-else

IF/ELSE
The IF/ELSE Node allows you to split a workflow into two branches based on if/else

conditions. In this node, you can set one or more IF conditions. When the IF condition(s) are

met, the workflow proceeds to the next step under the "IS TRUE" branch. If the IF

condition(s) are not met, the workflow triggers the next step under the "IS FALSE" branch.

Previous

Question Classifier

Next

Code

Last updated 2 months ago

Dify English Github

https://docs.dify.ai/features/workflow/node/question-classifier
https://docs.dify.ai/features/workflow/node/code
https://docs.dify.ai/
https://github.com/langgenius/dify

Code

The code node supports the execution of Python / NodeJS code to perform data

transformations within workflows. It simplifies your workflows, suitable for Arithmetic, JSON

transform, text processing, and more scenarios.

This node significantly enhances developers' flexibility, allowing them to embed custom

Python or Javascript scripts in their workflows and manipulate variables in ways that preset

nodes cannot achieve. Through configuration options, you can specify the required input and

output variables and write the corresponding execution code:

Introduction

Use Cases

Local Deployment

Security Policy

Navigation

Introduction

If you need to use variables from other nodes within the code node, you need to define the

variable names in input variables and reference these variables, see Variable Reference

for details.

With the code node, you can perform the following common operations:

In workflows, it's often necessary to deal with unstructured data processing, such as parsing,

extracting, and transforming JSON strings. A typical example is data processing in the HTTP

node, where data might be nested within multiple layers of JSON objects, and we need to

Configuration

Use Cases

Structured Data Processing

https://github.com/langgenius/dify-docs/blob/main/en/features/workflow/key_concept.md#variable

extract certain fields. The code node can help you accomplish these tasks. Here's a simple

example that extracts the data.name field from a JSON string returned by an HTTP node:

When complex mathematical calculations are needed in workflows, the code node can also

be used. For example, to calculate a complex mathematical formula or perform some

statistical analysis on the data. Here is a simple example that calculates the variance of a list:

Sometimes, you may need to concatenate multiple data sources, such as multiple knowledge

retrievals, data searches, API calls, etc. The code node can help you integrate these data

sources. Here's a simple example that merges data from two knowledge bases:

If you are a user deploying locally, you need to start a sandbox service, which ensures that

malicious code is not executed. Also, launching this service requires Docker, and you can find

specific information about the Sandbox service here. You can also directly start the service

using docker-compose

def main(http_response: str) -> str:
 import json
 data = json.loads(http_response)
 return {
 # do not forget to declare 'result' in the output variables
 'result': data['data']['name']
 }

def main(x: list) -> float:
 return {
 # do not forget to declare 'result' in the output variables
 'result': sum([(i - sum(x) / len(x)) ** 2 for i in x]) / len(x)
 }

def main(knowledge1: list, knowledge2: list) -> list:
 return {
 # do not forget to declare 'result' in the output variables
 'result': knowledge1 + knowledge2
 }

Mathematical Calculations

Data Concatenation

Local Deployment

Dify English Github

https://github.com/langgenius/dify/tree/main/docker/docker-compose.middleware.yaml
https://docs.dify.ai/
https://github.com/langgenius/dify

The execution environment is sandboxed for both Python and Javascript, meaning that

certain functionalities that require extensive system resources or pose security risks are not

available. This includes, but is not limited to, direct file system access, network calls, and

operating system-level commands.

Previous

IF/ELSE

Next

Template

Last updated 2 months ago

docker-compose -f docker-compose.middleware.yaml up -d

Security Policy

https://docs.dify.ai/features/workflow/node/if-else
https://docs.dify.ai/features/workflow/node/template

Template
Template lets you dynamically format and combine variables from previous nodes into a

single text-based output using Jinja2, a powerful templating syntax for Python. It's useful for

combining data from multiple sources into a specific structure required by subsequent nodes.

The simple example below shows how to assemble an article by piecing together various

previous outputs:

Beyond naive use cases, you can create more complex templates as per Jinja's

documentation for a variety of tasks. Here's one template that structures retrieved chunks

and their relevant metadata from a knowledge retrieval node into a formatted markdown:

https://jinja.palletsprojects.com/en/3.1.x/templates/

This template node can then be used within a Chatflow to return intermediate outputs to the

end user, before a LLM response is initiated.

The Answer node in a Chatflow is non-terminal. It can be inserted anywhere to output

responses at multiple points within the flow.

Previous

Code

Next

Variable Assigner

Last updated 2 months ago

{% for item in chunks %}
Chunk {{ loop.index }}.
Similarity: {{ item.metadata.score | default('N/A') }}

{{ item.title }}

Content
{{ item.content | replace('\n', '\n\n') }}

{% endfor %}

Dify English Github

https://docs.dify.ai/features/workflow/node/code
https://docs.dify.ai/features/workflow/node/variable-assigner
https://docs.dify.ai/
https://github.com/langgenius/dify

Variable Assigner
The Variable Assigner node serves as a hub for collecting branch outputs within the

workflow, ensuring that regardless of which branch is taken, the output can be referenced by

a single variable. The output can subsequently be manipulated by nodes downstream.

Variable Assigner supports multiple types of output variables including String , Number ,

Object , and Array . Given the specified output type, you may add input variables from the

dropdown list of variables to the node. The list of variables is derived from previous branch

outputs and autofiltered based on the specified type.

Variable Assigner gives a single output variable of the specified type for downstream use.

Previous

Template

Dify English Github

https://docs.dify.ai/features/workflow/node/template
https://docs.dify.ai/
https://github.com/langgenius/dify

Next

HTTP Request

Last updated 2 months ago

https://docs.dify.ai/features/workflow/node/http-request

HTTP Request
HTTP Request node lets you craft and dispatch HTTP requests to specified endpoints,

enabling a wide range of integrations and data exchanges with external services. The node

supports all common HTTP request methods, and lets you fully customize over the URL,

headers, query parameters, body content, and authorization details of the request.

A really handy feature with HTTP request is the ability to dynamically construct the request

by inserting variables in different fields. For instance, in a customer support scenario,

Dify English Github

https://docs.dify.ai/
https://github.com/langgenius/dify

variables such as username or customer ID can be used to personalize automated responses

sent via a POST request, or retrieve individual-specific information related to the

customer.The HTTP request returns body , status_code , headers , and files as outputs.

If the response includes files of MIME types (currently limited to images), the node

automatically saves these as files for downstream use.

Previous

Variable Assigner

Next

Tools

Last updated 2 months ago

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Common_types
https://docs.dify.ai/features/workflow/node/variable-assigner
https://docs.dify.ai/features/workflow/node/tools

Tools
Within a workflow, Dify provides both built-in and customizable tools. Before utilizing these

tools, you need to "authorize" them. If the built-in tools do not meet your requirements, you

can create custom tools within "Dify—Tools".

Configuring a tool node generally involves two steps:

1. Authorizing the Tool/Creating Custom Tools

2. Configuring Tool Inputs and Parameters

For guidance on creating custom tools and configuring them, please refer to the tool

configuration instructions.

Previous

HTTP Request

Next

Preview&Run

Last updated 2 months ago

Dify English Github

https://docs.dify.ai/tutorials/quick-tool-integration
https://docs.dify.ai/tutorials/quick-tool-integration
https://docs.dify.ai/tutorials/quick-tool-integration
https://docs.dify.ai/features/workflow/node/http-request
https://docs.dify.ai/features/workflow/preview-and-run
https://docs.dify.ai/
https://github.com/langgenius/dify

